Contrast Set Mining Through Subgroup Discovery Applied to Brain Ischaemina Data
نویسندگان
چکیده
Contrast set mining aims at finding differences between different groups. This paper shows that a contrast set mining task can be transformed to a subgroup discovery task whose goal is to find descriptions of groups of individuals with unusual distributional characteristics with respect to the given property of interest. The proposed approach to contrast set mining through subgroup discovery was successfully applied to the analysis of records of patients with brain stroke (confirmed by a positive CT test), in contrast with patients with other neurological symptoms and disorders (having normal CT test results). Detection of coexisting risk factors, as well as description of characteristic patient subpopulations are important outcomes of the analysis.
منابع مشابه
CSM-SD: Methodology for contrast set mining through subgroup discovery
This paper addresses a data analysis task, known as contrast set mining, whose goal is to find differences between contrasting groups. As a methodological novelty, it is shown that this task can be effectively solved by transforming it to a more common and well-understood subgroup discovery task. The transformation is studied in two learning settings, a one-versus-all and a pairwise contrast se...
متن کاملContrast Set Mining for Distinguishing Between Similar Diseases
The task addressed and the method proposed in this paper aim at improved understanding of differences between similar diseases. In particular we address the problem of distinguishing between thrombolic brain stroke and embolic brain stroke as an application of our approach of contrast set mining through subgroup discovery. We describe methodological lessons learned in the analysis of brain isch...
متن کاملSupporting Factors to Improve the Explanatory Potential of Contrast Set Mining: Analyzing Brain Ischaemia Data
The goal of exploratory pattern mining is to find patterns that exhibit yet unknown relationships in data and to provide insightful representations of detected relationships. This paper explores contrast set mining and an approach to improving its explanatory potential by using the so called supporting factors that provide additional descriptions of the detected patterns. The proposed methodolo...
متن کاملContrast Mining from Interesting Subgroups
Subgroup discovery methods find interesting subsets of objects of a given class. We propose to extend subgroup discovery by a second subgroup discovery step to find interesting subgroups of objects specific for a class in one or more contrast classes. First, a subgroup discovery method is applied. Then, contrast classes of objects are defined by using set theoretic functions on the discovered s...
متن کاملApplication of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007